Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

6-(4-Bromobenzylamino)purine

Molecules of the the title compound, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrN}_{5}$, are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into linear chains. In contrast to similar electroneutral 6-benzylaminopurine derivatives, which are usually protonated at the N9 atom, the purine skeleton is protonated at the N 7 position.

Comment

As part of a systematic crystallographic study of cytokinins and cyclin-dependent kinase (CDK) inhibitors, we have prepared the title compound, (I). As detailed in our earlier papers (Maloň et al., 2001; Trávníček et al., 2004; Trávníček \& Zatloukal, 2004; Trávníček \& Kryštof, 2004), cytokinins and CDK inhibitors are employed in many branches of agriculture, chemistry and medicine.

(I)

The molecular structure of (I) (Fig. 1) contains three different aromatic rings, benzene (A), pyrimidine (B) and imidazole (C). Each of these rings deviates slightly from planarity, with the maximum deviations from the mean planes being 0.007 (3) A for C11 (ring A), 0.010 (3) \AA for $\mathrm{C} 5($ ring B) and 0.004 (3) \AA for C 8 (ring C). The dihedral angle between ring A and the purine skeleton (rings B and C) is $61.29(7)^{\circ}$, whilst the B and C rings are nearly coplanar [dihedral angle $0.88(9)^{\circ}$. Bond lengths and angles in (I) are comparable with those in the structures of 6-(2-bromobenzylamino)purine monohydrate, (II) (Trávníček \& Rosenker, 2006), 6-(2-chloro-4-fluorobenzylamino)purine (Trávníček et al., 2006), 6-(2chlorobenzylamino)purine dihydrate (Maloň et al., 2001), 6-(2-hydroxybenzylamino) purine acetic acid solvate (Trávníček et al., 1997) and 6-benzylaminopurine (Raghunathan et al., 1983). Despite this, however, compound (I) is significantly different from these structures, on account of its protonation of atom N7, in contrast with N 9 in compound (II) and all of the other above-mentioned 6-benzylaminopurine derivatives. Protonation at the N7 position is very rare for electroneutral forms.

Received 10 August 2006

Accepted 5 September 2006

[^0]\author{

Key indicators

 Single-crystal X-ray study
 $T=110 \mathrm{~K}$
 Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
 R factor $=0.029$
 $w R$ factor $=0.071$
 Data-to-parameter ratio $=12.6$
 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
 Zdeněk Trávníček ${ }^{\text {a,b }}$ * and Miroslava Maľarová-Matikováa
 ${ }^{\text {a }}$ Department of Inorganic Chemistry, Faculty of Science, Palacký University, Křížkovského 10, CZ-771 47 Olomouc, Czech Republic, and
 ${ }^{\text {b }}$ Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany, Slechtitu 11
 Correspondence e-mail:
 zdenek.travnicek@upol.cz}

Figure 1
The molecular structure of (I), with displacement ellipsoids shown at the 50\% probability level.

Figure 2

Part of the crystal structure of (I), showing a chain of hydrogen-bonded (dashed lines) molecules extending along [010]. H atoms not involved in hydrogen bonding have been omitted.

Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2) link the molecules of (I) into one-dimensional chains extending along [010] (Fig. 2). The chains lie in layers parallel to (001), with $\pi-\pi$ stacking interactions between them (Fig. 3). The shortest $\mathrm{C} \cdots \mathrm{C}$ contacts between chains are $\mathrm{C} 8 \cdots \mathrm{C} 8^{\mathrm{ii}}=$ 3.260 (4) \AA and C2 $\cdots \mathrm{C} 4^{\mathrm{iii}}=3.340$ (4) \AA [symmetry codes: (ii) $1-x, y, \frac{1}{2}-z$; (iii) $-x, y, \frac{1}{2}-z$]. Between these layers, the bromobenzyl moietiess also involve $\pi-\pi$ stacking arrangements, with an interplanar separation of 3.54 (1) \AA. In this region, short $\mathrm{Br} \cdots \mathrm{Br}$ contacts $[3.577$ (4) \AA] are observed. By comparison, the shortest such contacts in (II) are 4.673 (5) \AA. This difference may be related to the presence of solvent water molecules in (II).

Experimental

Compound (I) was prepared by the procedure described previously for 6-(2-bromobenzylamino)purine monohydrate (Trávníček \& Rosenker, 2006). The microcrystalline product was recrystallized from hot N, N-dimethylformamide and colourless single crystals of (I) suitable for X-ray analysis were formed after 10 d .

Figure 3
A projection of (I), along the b direction, showing $\pi-\pi$ stacking interactions as dashed lines. H atoms have been omitted.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrN}_{5}$
$M_{r}=304.16$
Monoclinic, $C 2 / c$
$a=8.8944$ (4) A
$b=11.2015$ (5) \AA
$c=23.6518$ (9) \AA
$\beta=98.564$ (3) ${ }^{\circ}$
$V=2330.17(17) \AA^{3}$

Data collection

Oxford Xcalibur CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.369, T_{\text {max }}=0.417$

$$
\begin{aligned}
& Z=8 \\
& D_{x}=1.734 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=3.52 \mathrm{~mm}^{-1} \\
& T=110(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.30 \times 0.30 \times 0.25 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0233 P)^{2}\right. \\
& \quad+9.0814 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 6-\mathrm{H} 6 A \cdots \mathrm{~N} 9^{\mathrm{i}}$	0.88	2.07	$2.935(3)$	166
$\mathrm{~N} 7-\mathrm{H} 7 A \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.88	2.01	$2.856(3)$	161

Symmetry code: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.

organic papers

All H atoms were located in a difference map and refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of 0.95 and $0.99 \AA$ and $\mathrm{N}-\mathrm{H}$ distances of $0.88 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 and DIAMOND.

Financial support by the Grant Agency of the Czech Republic (grant No. 203/04/1168) and the Ministry of Education, Youth and Sports of the Czech Republic (grant No. MSM6198959218) is gratefully acknowledged.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brandenburg, K. (2006). DIAMOND. Release 3.1c. Crystal Impact GbR, Bonn, Germany.
Maloň, M., Trávníček, Z., Maryško, M., Zbořil, R., Mašláň, M., Marek, J., Doležal, K., Rolčík, J., Kryštof, V. \& Strnad, M. (2001). Inorg. Chim. Acta, 323, 119-129.
Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Raghunathan, S., Sinha, B. K., Pattabhi, V. \& Gabe, E. J. (1983). Acta Cryst. C39, 1545-1547.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Trávníček, Z. \& Kryštof, V. (2004). Acta Cryst. E60, o2324-o2327.
Trávníček, Z., Marek, J., Doležal, K. \& Strnad, M. (1997). Z. Kristallogr. 212, 538-541.
Trávníček, Z., Marek, J. \& Popa, I. (2006). Acta Cryst. E62, o1536-o1538.
Trávníček, Z., Popa, I. \& Doležal, K. (2004). Acta Cryst. C60, o662-o664.
Trávníček, Z. \& Rosenker, C. J. (2006). Acta Cryst. E62, o3393-o3395.
Trávníček, Z. \& Zatloukal, M. (2004). Acta Cryst. E60, o924-o926.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

